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Introduction 
• Several research directions rely heavily on geographically-annotated 

social media (which is extremely rare in public data) 
 

• Twitter feed from April 2012 until April 2014: 
• 37,400,698,296 tweets 
• 359,583,211 users 
• ~77TB of data 

 
 

 
 

 

Geotag method Tweets Users 

GPS 584,442,852 (1.6%) 22,413,350 (6.2%) 

Profile text (anything, 
e.g. “beiberland”) 

23,236,139,825 (62%) 164,020,169 (45.6%) 

Profile text 
(unambiguous)  

3,854,169,186 (10%) 45,284,996 (12.6%) 
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Related Work: Academic 

Academics (mostly NLP) are getting interested: 
- Eisenstein et al. “A latent variable model for 

geographic lexical variation” EMNLP 2010 
- Cheng et al. “You are where you tweet: a 

content-based approach to geolocating twitter 
users” CIKM 2010 

- Mahmud et al. “Where is this tweet from? 
inferring home locations of twitter users” 
ICWSM 2012 

- Rahimi et al. “Exploiting Text and Network 
Context for Geolocation of Social Media Users” 
NAACL 2015 
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Related Work: Academic 

Network science approaches: 
- Backstrom et al. “Find me if you can: improving 

geographical prediction with social and spatial 
proximity” WWW 2010 

- David Jurgens “That's what friends are for: 
Inferring location in online communities based 
on social relationships” ICWSM 2013 

- Present work 
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Related Work: Commercial 

- Twitter geocoding has become a 
commercial product 
 

- “For years now at GNIP, the 
most requested feature for our 
existing data has been `more 
geodata’ ” 
 

- Competitors exist: 
- Datasift offering geolocation 
- Tweepsmap.com 

 
 

 
 



© 2014 HRL Laboratories, LLC All Rights Reserved 6 

Unpublished Results Likely Exist 
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Method: 
 Social network analysis for static 

location inference 
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Network Data 

• We build a social network from @mentions 
 

• 10% Twitter data from April 2012 through April 2014 
 

• 25,312,399,718 @mentions (any type) 
 

• Twitter @mention network 
– 8,593,341,111 edges in weighted unidirected network 
– 1,034,362,407 edges in weighted bidirected network 
– 110,893,747 users in weighted bidirected network 

 
• Reciprocated @mentions indicate social ties (i.e. the “bidirected 

network”) 
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GPS Ground-truth user locations 

• 13,899,315 users have tweeted with GPS at least three times 
• Remove users with dispersion > 30km  

 
 

 
• Reduces to 12,435,622 users 
• Timestamps reveal 86,243 users exceeded the flight airspeed record of 

3529.6 km/h (bots, GPS malfunctions)* 
• We further remove any user who traveled faster than 1000 km/h 
• Leaves us with 12,297,785 GPS-known users 
• Use l1-multivariate median as “home” 

 
 

 
 
*Note: the maximum speed attained by any Twitter user in our data was 
67,587,505.24 km/h, over 30x the escape velocity from the Sun 
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Self-reported profile locations 

• We extract self-reported home locations by searching profiles for an 
exact match against a list of 51,483 unambiguous location names  

• List obtained via geonames.org, filtered against GPS-known users who 
have also self-reported profile locations 

• 7.10 km median discrepancy with GPS 
 
 
 
 
 
 
 
 
 

• 15,360,494 self-report users most recent 90 days 

GPS-known or self-reporting users: 24,545,425 
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Geolocation as an Optimization Problem 

• We seek a network such that the sum over all geographic 
distances between connected users is as small as possible 
 

 
 
 
 
 
 

• f encodes a location estimate for each user 
• L is the set of ground-truth user locations 
• w_ij is the minimum number of reciprocated @mentions between users i 

and j 
• d measures geodetic distance via Vincenty’s formulae 
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Remark 

• Our objective function is often referred to as total variation 
• Used in image processing since 1992 
• Starting to find use in machine learning 

 
 
 

 
 
 
 
https://plus.maths.org/content/restoring-profanity 
 
Rudin, Leonid I., Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal 
algorithms." Physica D: Nonlinear Phenomena 60.1 (1992): 259-268. 
Bresson, X., Laurent, T., Uminsky, D., & von Brecht, J. (2013). Multiclass total variation clustering. 
In Advances in Neural Information Processing Systems (pp. 1421-1429). 
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Assumption: Online Social Ties Correspond to Proximity 

 
• Twitter: Yuri Takhteyev et al. “Geography of twitter networks.” Social 

Networks 2012. 
 

• Facebook : Backstrom et al. “Find me if you can: improving geographical 
prediction with social and spatial proximity” WWW 2010 
 

• Wikipedia: Lieberman and Lin. "You Are Where You Edit: Locating 
Wikipedia Contributors Through Edit Histories" ICWSM 2009 
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Proximity of Social Ties in our Data 

Restrict to 953,557 edges which occur between GPS-known 
users in three networks: unidirected (black), bidirected (red), 
triadically-closed subgraph of the bidirected network (green) 
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Proximity of Social Ties in our Data 

Restrict to 953,557 edges which occur between GPS-known 
users in three networks: unidirected (black), bidirected (red), 
triadically-closed subgraph of the bidirected network (green) 
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Proximity of Social Ties in our Data 

Restrict to 953,557 edges which occur between GPS-known 
users in three networks: unidirected (black), bidirected (red), 
triadically-closed subgraph of the bidirected network (green) 
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Not Everyone Tweets with their Neighbors 

 
Additional heuristic: Don’t use social networks to infer location for 
users whose friends are dispersed around the globe 
 
Quantify geographic dispersion using median absolute deviation 
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Implementation 
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Remarks on Infrastructure 

• 35-node cluster  
• 32 processors per node (i.e. 1120 cores)  
• 363.88TB total hdfs capacity 
• 128g memory per node 
• Current bidirected network requires over 200g once loaded 
• Deployed distributed processing framework: 

 
– Hadoop file system for storage 

 
– Pig for GPS and network extraction 

 
– Spark for graph computation 

 
– Redis for fast access to results 
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Parallel Coordinate Descent 

• Distributed graph processing is hard 
• Richtarik, “Parallel coordinate descent methods for big data 

optimization.” arXiv:1212.0873 
• Lyubich et al. “Subharmonic functions on a directed graph” Siberian 

Mathematical Journal, 1969 (convergence?) 
 
 

 
 
 
 
 

 
 



© 2014 HRL Laboratories, LLC All Rights Reserved 21 

Parallel Coordinate Descent 

• Include the dispersion constraint in the simplest way possible 
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Parallel Coordinate Descent 

• Implementation in is straightforward in Spark 
• Advanced distributed graph-processing frameworks, such as GraphX, 

GraphLab, or some other implementation of Google’s Pregel model are 
possible 
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Results 
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Leave-many-out validation 

• Hold out 10% of GPS-known 
users 

• Run 5 iterations 
• Report discrepancy between 

GPS and inferred locations 
• Algorithm 1: 

– 115,410,410 users  
– 8.27 km median error 
– 430.56 km mean error 

• Algorithm 2,100km dispersion: 
– 101,846,236 users  
– 6.33 km median error 
– 291.5 km mean error 
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Error Control via Dispersion Constraint 

Scatter plots describing the coverage/accuracy trade off 
obtained when modifying gamma. 
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Error vs Iteration 

Iteration Test users New test 
users 

Median error 
(km) 

Median new 
error (km) 

1 771,321 771,321 5.34 5.34 

2 926,019 15,468 6.02 12.31 

3 956,705 30,686 6.24 45.50 

4 966,515 9,810 6.32 150.60 

5 971,731 5,216 6.38 232.92 
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Coverage 

• Study full Twitter dataset 
• 37,400,698,296 tweets generated by 359,583,211 users 

 
Geotag method Tweets Users 

GPS 584,442,852 (1.6%) 22,413,350 (6.2%) 
Profile text (anything, e.g. 
“beiberland”) 

23,236,139,825 (62%) 164,020,169 (45.6%) 

Profile text (unambiguous)  3,854,169,186 (10%) 45,284,996 (12.6%) 
Total Variation 30,617,806,498 (81.9%) 101,846,236 (28.3%) 
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Coverage 
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Coverage 
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Upcoming paper 
“testing nine geolocation inference techniques, all published recently in top-tier 
conferences” 
 

Jurgens et al. “Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and 
Review of Current Practice” ICWSM 2015 
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Applications 
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Movies 

There is interest in using Twitter to 
forecast opening weekend box 
office revenue 
 
 
When topic modeling is not an 
issue there are clear signals in 
Twitter data 
 
 
Remark: We had better success 
using Wikipedia page view 
statistics 
 
de Silva, Brian, and Ryan Compton. 
"Prediction of Foreign Box Office Revenues 
Based on Wikipedia Page Activity." arXiv 
preprint arXiv:1405.5924 (2014). 
 

Geolocated tweets per day mentioning 
“Looper”. 
(annotations by Laurent Giovangrandi) 
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Introduction 

• Since April 2012 HRL has been collecting a 10% of publicly-visible Twitter data 
via a commercial feed from GNIP 

• Used for IARPA-OSI program. Goal: Generate (in real time) predictions for:  
– disease outbreaks  
– elections 
– strikes/protests 
– financial catastrophes 

 
 

 
 
 

 

500M tweets 
per day 50M tweets 

per day 

Daily event 
predictions 

Research 
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Trend Forecasting vs. Discrete Event Prediction 

Compton et al. “Detecting future social unrest in unprocessed twitter data” IEEE-ISI, 2013 (best paper 
nomination) 
Compton et al. “Using publicly-visible social media to build detailed forecasts of civil unrest” Springer Security 
Informatics, 2014 (invited publication) 
Sofia Apreleva, Craig Lee, Tsai-Ching Lu “Robust tracking of morbidity trends using amplified signals 
extracted from Google Trends and Twitter” (to be submitted) 
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Censorship Monitoring 

Turkey:  
Censorship of Twitter March 20 – April 3 
 
Is it visible in public data? 
 
http://www.bbc.com/news/world-europe-26677134 
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Censorship Monitoring 
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Geotagging Other Digital Media via Twitter 
Sharing Locations 

Summary of discrepancy (in km), with a 100km restriction on dispersion, between 
the median of the locations of the users who share the link and API-based 
geotagging 
 
 
Compton, R., Keegan, M. S., & Xu, J. (2014). Inferring the geographic focus of 
online documents from social media sharing patterns. arXiv:1406.2392. 
 

Test points Median 
error (km) 

Mean error 
(km) 

YouTube 5022  22.80 1001.58 

Flickr 42 371.88 2475.04 

GDELT 1580 304.74 2432.81 

Manual 
news 

1115 36.66 902.01 



© 2014 HRL Laboratories, LLC All Rights Reserved 38 

Geotagging Other Digital Media via User 
Alignment 

Xu, J., Lu, T. C., Compton, R., & Allen, D. (2014, June). Quantifying cross-platform 
engagement through large-scale user alignment. In Proceedings of the 2014 ACM 
conference on Web science (pp. 281-282). ACM. 
 
Xu, J., Compton, R., Lu, T. C., & Allen, D. (2014, June). Rolling through tumblr: 
Characterizing behavioral patterns of the microblogging platform. In Proceedings of the 
2014 ACM conference on Web science (pp. 13-22). ACM. 

Geospatial distribution of Tumblr-Twitter 
aligned accounts 
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How to opt out? 

Some users may want to communicate publicly – but only to humans 
 
• Private @mentions don’t exist 
• www.captchatweet.com does exist, but has limited functionality 
• Suggestions? 

 
 

http://www.captchatweet.com/
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